Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cochrane Database Syst Rev ; 3: CD015084, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38501688

ABSTRACT

BACKGROUND: People affected by ulcerative colitis (UC) are interested in dietary therapies as treatments that can improve their health and quality of life. Prebiotics are a category of food ingredients theorised to have health benefits for the gastrointestinal system through their effect on the growth and activity of intestinal bacteria and probiotics. OBJECTIVES: To assess the efficacy and safety of prebiotics for the induction and maintenance of remission in people with active UC. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and WHO ICTRP on 24 June 2023. SELECTION CRITERIA: We included randomised controlled trials (RCTs) on people with UC. We considered any type of standalone or combination prebiotic intervention, except those prebiotics combined with probiotics (known as synbiotics), compared to any control intervention. We considered interventions of any dose and duration. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. MAIN RESULTS: We included 9 RCTs involving a total of 445 participants. Study duration ranged from 14 days to 2 to 3 months for induction and 1 to 6 months for maintenance of remission. All studies were on adults. Five studies were on people with mild to moderate active disease, three in remission or mild activity, and one did not mention. We judged only one study as at low risk of bias in all areas. Two studies compared prebiotics with placebo for induction of remission. We cannot draw any conclusions about clinical remission (70% versus 67%; risk ratio (RR) 1.05, 95% confidence interval (CI) 0.57 to 1.94); clinical improvement (mean Rachmilewitz score on day 14 of 4.1 versus 4.5; mean difference (MD) -0.40, 95% CI -2.67 to 1.87); faecal calprotectin levels (mean faecal calprotectin on day 14 of 1211 µg/mL versus 3740 µg/mL; MD -2529.00, 95% CI -6925.38 to 1867.38); interleukin-8 (IL-8) levels (mean IL-8 on day 7 of 2.9 pg/mL versus 5.0 pg/mL; MD -2.10, 95% CI -4.93 to 0.73); prostaglandin E2 (PGE-2) levels (mean PGE-2 on day 7 of 7.1 ng/mL versus 11.5 ng/mL; MD -4.40, 95% CI -20.25 to 11.45); or withdrawals due to adverse events (21% versus 8%; RR 2.73, 95% CI 0.51 to 14.55). All evidence was of very low certainty. No other outcomes were reported. Two studies compared inulin and oligofructose 15 g with inulin and oligofructose 7.5 g for induction of remission. We cannot draw any conclusions about clinical remission (53% versus 12.5%; RR 4.27, 95% CI 1.07 to 16.96); clinical improvement (67% versus 25%; RR 2.67, 95% CI 1.06 to 6.70); total adverse events (53.5% versus 31%; RR 1.71, 95% CI 0.72 to 4.06); or withdrawals due to adverse events (13% versus 25%; RR 0.53, 95% CI 0.11 to 2.50). All evidence was of very low certainty. No other outcomes were reported. One study compared prebiotics and anti-inflammatory therapy with anti-inflammatory therapy alone for induction of remission. We cannot draw any conclusions about clinical improvement (mean Lichtiger score at 4 weeks of 6.2 versus 10.3; MD -4.10, 95% CI -8.14 to -0.06) or serum C-reactive protein (CRP) levels (mean CRP levels at 4 weeks 0.55 ng/mL versus 0.50 ng/mL; MD 0.05, 95% CI -0.37 to 0.47). All evidence was of very low certainty. No other outcomes were reported. Three studies compared prebiotics with placebo for maintenance of remission. There may be no difference between groups in rate of clinical relapse (44% versus 33%; RR 1.36, 95% CI 0.79 to 2.31), and prebiotics may lead to more total adverse events than placebo (77% versus 46%; RR 1.68, 95% CI 1.18 to 2.40). The evidence was of low certainty. We cannot draw any conclusions about clinical improvement (mean partial Mayo score at day 60 of 0.428 versus 1.625; MD -1.20, 95% CI -2.17 to -0.22); faecal calprotectin levels (mean faecal calprotectin level at day 60 of 214 µg/mL versus 304 µg/mL; MD -89.79, 95% CI -221.30 to 41.72); quality of life (mean Inflammatory Bowel Disease Questionnaire (IBDQ) score at day 60 of 193.5 versus 188.0; MD 5.50, 95% CI -8.94 to 19.94); or withdrawals due to adverse events (28.5% versus 11%; RR 2.57, 95% CI 1.15 to 5.73). The evidence for these outcomes was of very low certainty. No other outcomes were reported. One study compared prebiotics with synbiotics for maintenance of remission. We cannot draw any conclusions about quality of life (mean IBDQ score at 4 weeks 182.4 versus 176.1; MD 6.30, 95% CI -6.61 to 19.21) or withdrawals due to adverse events (23% versus 20%; RR 1.13, 95% CI 0.48 to 2.62). All evidence was of very low certainty. No other outcomes were reported. One study compared prebiotics with probiotics for maintenance of remission. We cannot draw any conclusions about quality of life (mean IBDQ score at 4 weeks 182.4 versus 168.6; MD 13.60, 95% CI 1.22 to 25.98) or withdrawals due to adverse events (22.5% versus 22.5%; RR 1.00, 95% CI 0.44 to 2.26). All evidence was of very low certainty. No other outcomes were reported. AUTHORS' CONCLUSIONS: There may be no difference in occurrence of clinical relapse when adjuvant treatment with prebiotics is compared with adjuvant treatment with placebo for maintenance of remission in UC. Adjuvant treatment with prebiotics may result in more total adverse events when compared to adjuvant treatment with placebo for maintenance of remission. We could draw no conclusions for any of the other outcomes in this comparison due to the very low certainty of the evidence. The evidence for all other comparisons and outcomes was also of very low certainty, precluding any conclusions. It is difficult to make any clear recommendations for future research based on the findings of this review given the clinical and methodological heterogeneity among studies. It is recommended that a consensus is reached on these issues prior to any further research.


Subject(s)
Colitis, Ulcerative , Adult , Humans , Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Interleukin-8 , Inulin/therapeutic use , Leukocyte L1 Antigen Complex , Prebiotics , Recurrence , Remission Induction
2.
Lancet Gastroenterol Hepatol ; 8(3): 271-286, 2023 03.
Article in English | MEDLINE | ID: mdl-36634696

ABSTRACT

Genomic medicine enables the identification of patients with rare or ultra-rare monogenic forms of inflammatory bowel disease (IBD) and supports clinical decision making. Patients with monogenic IBD frequently experience extremely early onset of treatment-refractory disease, with complex extraintestinal disease typical of immunodeficiency. Since more than 100 monogenic disorders can present with IBD, new genetic disorders and variants are being discovered every year, and as phenotypic expression of the gene defects is variable, adaptive genomic technologies are required. Monogenic IBD has become a key area to establish the concept of precision medicine. Clear guidance and standardised, affordable applications of genomic technologies are needed to implement exome or genome sequencing in clinical practice. This joint British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition guideline aims to ensure that testing resources are appropriately applied to maximise the benefit to patients on a national scale, minimise health-care disparities in accessing genomic technologies, and optimise resource use. We set out the structural requirements for genomic medicine as part of a multidisciplinary team approach. Initiation of genomic diagnostics should be guided by diagnostic criteria for the individual patient, in particular the age of IBD onset and the patient's history, and potential implications for future therapies. We outline the diagnostic care pathway for paediatric and adult patients. This guideline considers how to handle clinically actionable findings in research studies and the impact of consumer-based genomics for monogenic IBD. This document was developed by multiple stakeholders, including UK paediatric and adult gastroenterology physicians, immunologists, transplant specialists, clinical geneticists, scientists, and research leads of UK genetic programmes, in partnership with patient representatives of several IBD and rare disease charities.


Subject(s)
Gastroenterology , Inflammatory Bowel Diseases , Humans , Child , Adult , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Nutritional Status , Genomics
3.
Antiviral Res ; 175: 104718, 2020 03.
Article in English | MEDLINE | ID: mdl-32004620

ABSTRACT

The global analysis of neuraminidase inhibitor (NAI) susceptibility of influenza viruses has been conducted since the 2012-13 period. In 2018 a novel cap-dependent endonuclease inhibitor, baloxavir, that targets polymerase acidic subunit (PA) was approved for the treatment of influenza virus infection in Japan and the United States. For this annual report, the susceptibilities of influenza viruses to NAIs and baloxavir were analyzed. A total of 15409 viruses, collected by World Health Organization (WHO) recognized National Influenza Centers and other laboratories between May 2017 and May 2018, were assessed for phenotypic NAI susceptibility by five WHO Collaborating Centers (CCs). The 50% inhibitory concentration (IC50) was determined for oseltamivir, zanamivir, peramivir and laninamivir. Reduced inhibition (RI) or highly reduced inhibition (HRI) by one or more NAIs was exhibited by 0.8% of viruses tested (n = 122). The frequency of viruses with RI or HRI has remained low since this global analysis began (2012-13: 0.6%; 2013-14: 1.9%; 2014-15: 0.5%; 2015-16: 0.8%; 2016-17: 0.2%). PA gene sequence data, available from public databases (n = 13523), were screened for amino acid substitutions associated with reduced susceptibility to baloxavir (PA E23G/K/R, PA A36V, PA A37T, PA I38F/M/T/L, PA E119D, PA E199G): 11 (0.08%) viruses possessed such substitutions. Five of them were included in phenotypic baloxavir susceptibility analysis by two WHO CCs and IC50 values were determined. The PA variant viruses showed 6-17-fold reduced susceptibility to baloxavir. Overall, in the 2017-18 period the frequency of circulating influenza viruses with reduced susceptibility to NAIs or baloxavir was low, but continued monitoring is important.


Subject(s)
Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza B virus/drug effects , Morpholines/pharmacology , Pyridones/pharmacology , Triazines/pharmacology , Amino Acid Substitution , Global Health , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Inhibitory Concentration 50 , Mutation , Oseltamivir/pharmacology
4.
Antiviral Res ; 157: 38-46, 2018 09.
Article in English | MEDLINE | ID: mdl-29981793

ABSTRACT

A total of 13672 viruses, collected by World Health Organization recognised National Influenza Centres between May 2016 and May 2017, were assessed for neuraminidase inhibitor susceptibility by four WHO Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance Epidemiology and Control of Influenza. The 50% inhibitory concentration (IC50) was determined for oseltamivir and zanamivir for all viruses, and for peramivir and laninamivir in a subset (n = 8457). Of the viruses tested, 94% were obtained from the Western Pacific, Americas and European WHO regions, while limited viruses were available from the Eastern Mediterranean, African and South East Asian regions. Reduced inhibition (RI) by one or more neuraminidase inhibitor was exhibited by 0.2% of viruses tested (n = 32). The frequency of viruses with RI has remained low since this global analysis began (2015/16: 0.8%, 2014/15: 0.5%; 2013/14: 1.9%; 2012/13: 0.6%) but 2016/17 has the lowest frequency observed to date. Analysis of 13581 neuraminidase sequences retrieved from public databases, of which 5243 sequences were from viruses not included in the phenotypic analyses, identified 58 further viruses (29 without phenotypic analyses) with amino acid substitutions associated with RI by at least one neuraminidase inhibitor. Bringing the total proportion to 0.5% (90/18915). This 2016/17 analysis demonstrates that neuraminidase inhibitors remain suitable for treatment and prophylaxis of influenza virus infections, but continued monitoring is important. An expansion of surveillance testing is paramount since several novel influenza antivirals are in late stage clinical trials with some resistance already having been identified.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Enzyme Inhibitors/pharmacology , Influenza, Human/virology , Neuraminidase/antagonists & inhibitors , Orthomyxoviridae/drug effects , Amino Acid Substitution , Global Health , Humans , Influenza, Human/epidemiology , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Mutation, Missense , Neuraminidase/genetics , Orthomyxoviridae/enzymology , Orthomyxoviridae/isolation & purification , Prevalence , Sequence Analysis, DNA
5.
Antiviral Res ; 146: 12-20, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28802866

ABSTRACT

Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) assessed antiviral susceptibility of 14,330 influenza A and B viruses collected by WHO-recognized National Influenza Centres (NICs) between May 2015 and May 2016. Neuraminidase (NA) inhibition assay was used to determine 50% inhibitory concentration (IC50) data for NA inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Furthermore, NA sequences from 13,484 influenza viruses were retrieved from public sequence databases and screened for amino acid substitutions (AAS) associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NAIs. Of the viruses tested by WHO CCs 93% were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.8% (n = 113) exhibited either RI or HRI by at least one of four NAIs. As in previous seasons, the most common NA AAS was H275Y in A(H1N1)pdm09 viruses, which confers HRI by oseltamivir and peramivir. Two A(H1N1)pdm09 viruses carried a rare NA AAS, S247R, shown in this study to confer RI/HRI by the four NAIs. The overall frequency of A(H1N1)pdm09 viruses containing NA AAS associated with RI/HRI was approximately 1.8% (125/6915), which is slightly higher than in the previous 2014-15 season (0.5%). Three B/Victoria-lineage viruses contained a new AAS, NA H134N, which conferred HRI by zanamivir and laninamivir, and borderline HRI by peramivir. A single B/Victoria-lineage virus harboured NA G104E, which was associated with HRI by all four NAIs. The overall frequency of RI/HRI phenotype among type B viruses was approximately 0.6% (43/7677), which is lower than that in the previous season. Overall, the vast majority (>99%) of the viruses tested by WHO CCs were susceptible to all four NAIs, showing normal inhibition (NI). Hence, NAIs remain the recommended antivirals for treatment of influenza virus infections. Nevertheless, our data indicate that it is prudent to continue drug susceptibility monitoring using both NAI assay and sequence analysis.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza B virus/drug effects , Neuraminidase/antagonists & inhibitors , Acids, Carbocyclic , Amino Acid Substitution , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Cyclopentanes/pharmacology , Drug Resistance, Viral/genetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/therapeutic use , Epidemiological Monitoring , Global Health , Guanidines/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/genetics , Influenza B virus/enzymology , Influenza B virus/genetics , Influenza, Human/drug therapy , Influenza, Human/virology , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Oseltamivir/pharmacology , Pyrans , Seasons , Sialic Acids , World Health Organization , Zanamivir/analogs & derivatives
7.
Hepatol Int ; 2(4): 440-56, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19669319

ABSTRACT

PURPOSE: The development of antiviral resistance is a recognized challenge to successful treatment of chronic hepatitis B (CHB), but it has been difficult to establish an accurate estimate of its incidence due to a number of factors: (a) lack of an accepted definition of antiviral resistance; (b) lack of a standardized assay to assess resistance; and (c) lack of consensus on patient selection criteria for resistance testing. Lamivudine, an effective and well-established antiviral agent, has been reported to show one-year resistance rates in CHB ranging from 6% to 32%, but methodologies used to calculate these rates vary considerably. This article reviews the clinical, statistical, and laboratory methodologies of clinical studies reporting one-year rates of antiviral resistance to lamivudine in CHB. METHODS: Studies reporting one-year resistance rates to lamivudine in CHB were analyzed for methodologic differences and their influence on reported resistance rates. RESULTS: Studies using only a genotypic definition of resistance reported one-year rates ranging from 14% to 32%. Studies assessing genotypic resistance in patients with evidence of virologic breakthrough reported much lower one-year resistance rates of 6.4-15.4%. CONCLUSIONS: It is important when comparing resistance rates to antiviral drugs in CHB to consider the methodology and definition of resistance used because this can dramatically influence the results.

8.
Vaccine ; 21(13-14): 1375-81, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12615433

ABSTRACT

A novel swine influenza virus, H1N2, circulates in European swine populations together with H1N1 and H3N2 viruses. This study examines whether post-infection immunity to H1N1 and/or H3N2 viruses provides cross-protection against H1N2 infection. Pigs (n=51) were inoculated intranasally with either Sw/Belgium/1/98 (H1N1) or Sw/Flanders/1/98 (H3N2), or with both viruses at a 5-week interval. Control groups were left uninoculated or inoculated with Sw/Gent/7625/99 (H1N2). Four weeks later, all the pigs were challenged intranasally and intratracheally with a high H1N2 virus dose. The challenge control pigs showed typical influenza symptoms, and all had high H1N2 virus titres in the lungs and nasal virus excretion during 6 or 7 days. The H1N2-immune pigs showed total clinical and virological protection. Pigs immune against H1N1 or H3N2 only were not protected against disease and virus replication in the lungs, but virus excretion was 2 days shorter. By contrast, pigs immune against both H1N1 and H3N2 did not show disease and H1N2 virus replication was either undetectable or markedly reduced. Haemagglutination inhibition (HI) and virus neutralisation (VN) tests indicated that cross-protection against H1N2 was probably not mediated by antibodies against the haemagglutinin (HA). Antibodies inhibiting the neuraminidase (NA) of H1N2 were at minimal levels in H3N2 only-immune pigs, but they were consistently found in (H1N1+H3N2)-immune pigs. The immune response against the internal proteins, which are relatively conserved in H1N1, H3N2 and H1N2 viruses, may play a significant role in protection against H1N2. Given the severe challenge model used here, cross-protection against H1N2 could be more pronounced under natural conditions of infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/veterinary , Swine Diseases/prevention & control , Animals , Antibodies, Viral/blood , Hemagglutination Inhibition Tests , Influenza A virus/classification , Neutralization Tests , Orthomyxoviridae Infections/prevention & control , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...